Sign in to FlowVella

Forgot password?
Sign in with Facebook

New? Create your account

Sign up for FlowVella

Sign up with Facebook

Already have an account? Sign in now


By registering you are agreeing to our
Terms of Service

Share This Flow

Loading Flow

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

DNA Replication

DNA helices big into unwind.

Helicase enzyme separates the DNA molecule exposing the nitrogenous bases. Site of separation is the replication bubble and the Y shaped region at the end of the replication bubble is called the replication fork.

Each strand serves as a template for a new strand

A=T C=G
so
ACTTGACTG
TGAACTGAC

The needed tools to replicate DNA gradually build up until proteins form a replisome. RNA primers form to initiate DNA replication and are replaced by DNA nucleotides.

DNA polymerase III positions nucleotides on the template strand and links them together. The leading strand moves in the direction of the replication fork in the lagging strand moves in the opposite direction.

DNA segments are spliced together by ligase. 2 DNA molecules form and contain one old and one new strand (semiconservative replication)

Histones complete the formation of two chromatin strands and they form chromatids. They're held together by cohesin (protein) until the cell enters anaphase of cell division.

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...

Downloading Image /

loading...
  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

  • 11

  • 12

  • 13

  • 14

  • 15

  • 16

  • 17

  • 18

  • 19

  • 20

  • 21

  • 22

  • 23

  • 24

  • 25

  • 26

  • 27

  • 28

  • 29

  • 30

  • 31

  • 32

  • 33

  • 34

  • 35

  • 36

  • 37

  • 38

  • 39

  • 40

  • 41

  • 42

  • 43

  • 44

  • 45

  • 46

  • 47

Human Anatomy & Physiology

By Soneill

Stephanie O'Neill